
Software-Based Networks:

Leveraging

high-performance NFV

platforms to meet future

communication challenges

K.K. Ramakrishnan
University of California,

Riverside

(kk@cs.ucr.edu)

Joint work with: Timothy Wood (GWU) ,

our students, collaborators

A Middlebox World

carrier-grade NAT

load balancer

DPI
QoE monitor

ad insertion

BRAS

session border

controller

transcoder

WAN accelerator

DDoS protection

firewall

IDS

3

Network Function Virtualization
- Run network functions in software

- Driven by a confluence of factors: system capabilities; OS evolution
- Requirements of new services + evolution of the network infrastructure

4

Commodity Server

Router

Switch

RouterFirewall

LB

Virtualization Layer / OS

VM
Switch

VM
Firewall

Docker
LB
Docker

• More flexible than hardware
- Easy to deploy NFs; quick instantiation

- Easier to manage NFs

- Network Service Providers are migrating towards a
software-based networking infrastructure: AT&T “55% of
network functions have been virtualized”

Virtualization Overheads
• Virtualization layer provides (resource and performance) isolation

among virtual machines

• Isolation involves many functions such as access permissions (security),

ability to schedule and share etc.

• Network overhead (packet delivery) is one of the most critical

concerns

• A generic virtualization architecture includes several critical

boundaries − host OS, virtual NIC, guest OS, and guest user

space−getting packet data there includes memory copies

Jinho Hwang, K.K. Ramakrishnan, and Timothy Wood, “NetVM: High Performance and Flexible Networking using
Virtualization on Commodity Platforms,” NSDI ‘14.

5

Contributions: OpenNetVM
1. A virtualization-based high-speed packet delivery platform

- for flexible network service deployment that can meet the

performance of customized hardware, especially when involving

complex packet processing

2. Network shared-memory framework

- that truly exploits the DPDK (data plane development kit) library to

provide zero-copy delivery to VMs and between VMs (containers)

3. A NF-Manager: provides switching and overall NF management

- dynamically adjust a flow’s destination in a state-dependent and/or

data-dependent manner

4. High speed inter-NF communication

- enabling complex network services to be spread across multiple NFs

5. Security domains

- that restrict access of packet data to only trusted NFs

6

Key Technical Challenges

• Achieving high performance:
• Wire-speed throughput

• Low Latency

Function as a ‘bump in the wire’

• Flexibility to support software functionality from many sources/vendors

• Customization – can we have network functions customized for each
packet flow?

• Flurries (CoNext 2016), Microboxes (Sigcomm 2018)

• Scalability and effectively using resources: NFVnice (Sigcomm 2017)

• Scheduling

• Managing congestion

• Failure Resiliency
• Reinforce (Conext 2018)

7

Achieving High Performance

8

Linux Packet Processing

•Traditional networking:
– NIC uses DMA to copy data into kernel buffer

– Interrupt when packets arrive

– Copy packet data from kernel space to user space

– Use system call to transmit packet from user space

Can it handle being

interrupted 14 million

times per second?

9

User Applications

Linux

H/W Platform

Packet copy
Interrupt Handling
System calls

Generic Packet Processing

Data Plane Development Kit (DPDK)

• High performance I/O library

• Poll mode driver reads packets from NIC

• Packets bypass the OS and are copied directly into
user space memory

• Low level library... does not provide:
- Support for multiple network functions

- Interrupt-driven NFs

- State management

- SDN-based control

- TCP/IP protocol stack

10

OpenNetVM Architecture

• NF Manager (with DPDK)
runs in user space

• NFs run inside Docker
containers

-NUMA-aware processing

- Zero-copy data transfer to and between NFs

-No Interrupts using DPDK poll-mode driver

-Scalable Multiple Rx and Tx threads in manager

- Each NF has its own ring to receive/transmit a packet
descriptor

- NFs start in 0.5 second; throughput of 68 Gbps w/ 6
cores; base forwarding latency < 10 msecs

11

OpenNetVM – System Architecture

• NF Manager uses DPDK library to allocate memory pools in

huge pages for packets

• NFs map memory regions using same base virtual address

as NF manager- descriptor access and shared memory

12

How to Eliminate / Hide Overheads?

Interrupt
Context
Switch

Overhead

Kernel
User

Overhead

Core To
Thread

Scheduling
Overhead

Polling
(dedicated core)

User
Mode
Driver

(DPDK)

Pthread
Affinity
(pin threads to

cores)

4K
Paging

Overhead

PCI Bridge
I/O

Overhead

Huge Pages
(1GB huge pages)

Lockless Inter-core
Communication

(ring buffer based message queues)

High Throughput
Bulk Mode I/O calls

13

Zero-Copy Packet Delivery
• Packet directly DMA-ed into huge page memory by

NIC (take advantage of DPDK)

• Applications in Container receive references

(location) via the shared descriptor ring buffer

• Packet content can be modified by NF application

Hypervisor User Space

VM

Huge Page Memory Sharing

NetVM

Applications

Packet

14

Service Chains
• Chain together functionality to build more complex
services

- Need to move packets through chain efficiently

Firewall NAT Router

Server

15

Service Chains
• Chain together functionality to build more complex
services

- Need to move packets through chain efficiently

Firewall

IDS

RouterNAT

Cache

Transcoder

DPI

• Can be complex with multiple paths!

16

Chained Packet Delivery
• Packets in memory do not have to be copied

• Applications in containers pass packet references to
others: NF→NF – through the descriptor ring

• Only one application can access a given packet at

any time for writing – avoid locks
o Allow multiple readers (e.g., packet monitoring)

VM

Hypervisor User Space

VM

Huge Page Memory Sharing

NetVM

Applications

Packet

Applications

NFNF

NF Manager

17

Trusted and Untrusted Domains
• Virtualization should provide security guarantees among

VMs/containers

• OpenNetVM provides a security boundary between trusted

and untrusted NFs

• Grouping of trusted NFs via huge page separation

• Untrusted NFs cannot see packets from OpenNetVM

Hypervisor

#1 Trusted VMs #2 Trusted VMs Non-Trusted VMs

VM VM VM VM VM VM

Memory
Sharing

Memory
Sharing

NetVM

Generic Net. Path

NF Manager

18

Performance w/ Real Traffic
• Send HTTP traffic through OpenNetVM

- 1 RX thread, 1 TX thread, 1 NF = 48Gbps

- 2 RX threads, 2 TX threads, 2 NFs = 68Gbps (NICs bottleneck?)

- 2 RX threads, 5 TX threads, chain of 5 NFs = 38Gbps

• Fast enough to run software-based edge/core
router; Middleboxes function as a ‘bump-in-the-wire’

21

Service Chain Performance

• Negligible performance difference between
processes and containers.
- OpenNetVM sees only a 4% drop in throughput for a six NF

chain, while ClickOS falls by 39% with a chain of three NFs.

22

OpenNetVM – NFV Open Source Platform

• Network Functions run in Docker containers

• DPDK based design, to achieve zero-copy, high-speed
I/O

• Key: Shared memory across NFs and NF Manager

• An open source platform

• Multiple industrial partners evaluating/using
OpenNetVM

• Of course, there are many competitors (e.g., Fast Data
Project (fd.io), NetMap, BESS (E2), ClickOS, etc.)

http://sdnfv.github.io

23

Scalability, Performance, Fairness: NF

Scheduling and Backpressure -

NFVnice
Sameer G Kulkarni, Wei Zhang, Jinho Hwang and Shriram

Rajagopalan, K. K. Ramakrishnan, Timothy Wood and others

(ACM Sigcomm 2017)

24

How to address performance and
scalability for NFV platforms?

• Consolidation approaches
– E2 [SOSP ‘15], NetBricks [OSDI‘16]:

– Consolidate NFs of a chain on
single core.

• But, lot of different NFs and diverse NF chains >>> compute cores!
Performance; Scalability!  Chain Deployment Flexibility!!

• Multiplexing approach:
– Flurries [CoNext ‘16], ClickOS [NSDI‘14]

– Multiplex NFs on same core.

Scalability; Performance?
Chain Deployment Flexibility;

How to Schedule the NFs to optimize the system utilization?
25

Scalability through NF Scheduling
Why schedule/multiplex more than 1 NF on same core?

Not all NFs need full CPU → Poll mode results in wastage of CPU
bandwidth.

I/O bound NFs result in sporadic/intermittent usage of CPU.

Diverse & large number of network functions; and diverse NF
policies (chains).

NFs and # NF Chains >> # Cores on Servers

Varying traffic cha’ → not all NFs process packets all the time.

Cross core chaining of NFs result in cross-core NUMA overheads.

To support diverse NFs and NF chains, to efficiently utilize CPU
bandwidth, and to avoid CC-NUMA overheads, multiplexing
multiple NFs on the same core may be beneficial.

26

NF Scheduling: Fundamentals
NF Scheduling: combines both the hardware packet-scheduling and software
process-scheduling concepts.

NFs/flows sensitive: minimize packet-drops and provide predictable latency

Hardware packet-scheduling:
Determine the order of packet transmission at the output link.
Examples: FIFO, Round Robin, Weighted RR, Class based, Priority, etc.

In NF Scheduling, corresponds to selection of packets for processing at each
of the NFs.

27

NF Scheduling: Fundamentals
Software NF Scheduling: OS Schedulers allocate CPU to the competing NFs.
Different OS Schedulers: NORMAL (CFS, Batch), Real Time (Round Robin, FIFO).

Diverse (heterogeneous) NFs have different per-packet computation costs.

Per-packet processing cost of the NF can vary → resulting in different CPU
utilizations over time.

NFs can be part of one or multiple service chains → order of scheduling the NFs
can impact the packet processing.

• Space needed for Red-black tree is O(𝑛).

• Search, Insert, Delete in the order: O(log𝑛).

• CFS: “Virtual-runtime” based fair scheduler.

(numbers in tree represent the total

vruntime accrued by each process).

• “Red-black” tree: efficient, self-balancing

data-structure to store/sort the tasks.

• Left-most task (least vruntime) is scheduled.

28

NF Scheduling: Desiderata
Multiplexing more NFs on same core:

Diverse network functions: I/O intensive or different computation costs;
scheduling them on a single CPU can impact the overall performance
(throughput and latency).
Flows can be of varying rates, going through different NF chains.

Ensure fair-sharing of the CPU resource across all the competing NFs.
What is the right notion of fairness for allocating CPU to the NFs?

Honor both packet-level scheduling requirements (per-flow QoS) and task-
level process scheduling requirements (per-NF QoS).

What is/are the right knobs(s) to tune and control the OS
schedulers?

In addition, packet processing at NFs needs to follow the order in the
service graph. Scheduling order can have a large impact on throughput
and latency.

What is the right sequence/order for scheduling the NFs?

29

Use Existing Linux Schedulers?

• Vanilla Linux schedulers:

• We want:
– High throughput

– Fairness across NFs

– Low latency

– Low context switch overheads

Completely Fair Scheduler
• Normal or Default
• Batch (longer time scales)

Real Time Scheduler
• Round Robin
• FIFO

- Virtual run time
- Nanosecond granularity

- Time slice
- Millisecond granularity

Do existing schedulers
perform well?

Do schedulers account for:
• Offered Load?
• NF cost heterogeneity?
• Chaining sequence? 31

OS Scheduler Characterization (Load)

3 Homogeneous NFs running on the same core with offered load 2:2:1.

Schedulers fail to account NF load!

NF2
(X)

NF3
(X)

NF1
(X)

6Mpps 6Mpps 3Mpps

Core

Flow 1 Flow 2 Flow 3

Ideal Allocation (NF3)

Ideal Allocation (NF1, NF2)

Ideal Throughput (F1, F2)

Ideal Throughput (F3)

32

• Normal and Batch CFS always allocate CPU equally.

• RR: CPU allocation depends on voluntary yield within the allotted time-slice.

• Ideally, rate proportional allocation for NF1:NF2:NF3 must be 2:2:1.

OS Scheduler Characterization (Cost)

Schedulers fail to account NF Processing cost!

3 Heterogeneous NFs (per packet processing cost 10:5:1) with equal load

NF2
(5X)

NF3
(X)

NF1
(10X)

Core

~5Mpps ~5Mpps ~5Mpps

Flow 1 Flow 2 Flow 3

Ideal Allocation (NF2)

Ideal Allocation (NF3)

Ideal Allocation (NF1)

Ideal Throughput (F1, F2, F3)

33

• Again, Normal CFS allocates CPU equally; Batch CFS is coarser allocation (better)

• RR: allocation depends on voluntary yields in allotted time-slice.

• Ideally the cost proportional allocation for NF1:NF2:NF3 needs to be 10:5:1

OS Scheduler Characterization (Chain)
3 NF chain (all NFs running on same core):

Flow 1

CPU % NORMAL BATCH RR

NF1 34% 15% 9%

NF2 34% 42% 37%

NF3 33% 43% 54%

Ctx sw/s NORMAL BATCH RR

Total 20K/s 2K/s 1K/s

Vanilla Linux schedulers result in sub-optimal resource utilization.

Need the schedulers to be: Load, NF characteristic, & chain aware!

Too many/too little context switches result in overhead and inappropriate allocation of CPU

7.1

3.58

3.52

2.02

34

• NFVnice in a nutshell:

– Complements the existing kernel task schedulers.
• Integrates “Rate proportional scheduling” from hardware schedulers.

• Integrates “Cost Proportional scheduling” from software schedulers.

– Built on OpenNetVM[HMBox’16, NSDI’14]: A DPDK based NFV platform.

• Enables deployment of containerized or process based NFs.

– Improves NF Throughput, Fairness and CPU Utilization through:
• Proportional and Fair share of CPU to NFs: Tuning Scheduler.

• Avoid wasted work and isolate bottlenecks: Backpressure.

• Efficient I/O management framework for NFs.

A user space control framework for scheduling NFV chains.

NFVnice

35

NFVnice: Building Blocks

NFVnice

cgroups
Work-conserving and proportional
scheduling (within each core)

Chain-aware scheduling; Avoid
wasted work (within and across cores of
a node)

Back
pressure

End-2-End Bottleneck/congestion
control (across nodes)ECN

Efficient Disk I/O Mgmt. Library
I/O
Mgt.

37

• What is Rate-Cost Proportional Fairness?

– Determines the NFs CPU share by accounting for:
• NF Load (Avg. packet arrival rate, instantaneous Queue length)

• NF Priority and the median per-packet computation cost.

• Why?

– Efficient and fair allocation of CPU to the contending NFs.

– Flexible & Extensible approach to adapt to any QOS policy.

• How?
– Cgroups (control groups) is a Linux kernel feature that limits, accounts

for and isolates the resource usage (CPU, memory, disk I/O, network,
etc.) of a collection of processes.

Rate-Cost Proportional Fairness
cgroups

38

Rate-Cost Proportional Fairness
cgroups

Weight Computation

Initialization
mkdir /cgroupfs/NF(i)

Update Cgroup Weight
Write “NFShare(i)” to
/cgrougfs/NF(i)/cpu.shares

Every 10 ms

39

Backpressure in NF chains

• Selective per chain backpressure marking.

– Only Flow “A” going through bottleneck NF (NF3) is back-
pressured and throttled at the upstream source NF1.

– while Flow “B” is not affected.

Back
pressure

Upstream Dataflow Downstream

Bottleneck

40

NF2NF2

NF4

NF3NF3

NFVnice Backpressure
NF1

Back
pressure

NF1

Clear
Throttle

Throttle
Packets

Qlen < LOW_WATER_MARK

Lots of Wasted Work

Incurs Delay, No Isolation

Reacts Instantaneously

Chain Isolation

Watch
list

Monitor

TX

NF4

Flow 1

Flow 2
NF1 NF2

NF3*

41

• Testbed:
– Hardware: 3 Intel Xeon(R) CPU E5-2697, 28 cores @2.6Ghz servers, with

dual port 10Gbps DPDK compatible NICs.
– Software: Linux kernel 3.19.0-39-lowlatency profile.
– NFVnice: built on top of OpenNetVM.

• Traffic:
– Pktgen and Moongen: Line rate traffic (64 byte packets).
– Iperf: TCP flows.

• Schemes compared:
– Native Linux Schedulers with and w/o NFVnice.
– Different NFs (varying computation costs) and chain configurations.

Evaluation

10Gbps 10Gbps

43

Performance: Impact of cgroup weights
and Backpressure

NF1
120 Cpp

Simple Three NF Chain

NF2
270 Cpp

NF3
550 Cpp

Core-1 Core-1 Core-1

Cycles per packet

NF Runtime (ms)
(measured over 2s interval)

Default NFVnice

657.825 128.723

602.285 848.922

623.797 1014.218

CFS Normal
Scheduler

Wasted Work
(Packet Drops/sec)

Default NFVnice

NF1
3.58M

58%
11.2K
<0.3%

NF2
2.02M

50%
12.3K
<0.4%

NF3 - -

Significant

Reduction in Wasted

Work!

CPU Allocation 𝛼 to
Computation Cost

NFVnice improves throughput for all kernel schedulers.

44

0 1 2 3 4 5 6 7 8 9

NFVnice-NF4

Default-NF4

NFVnice-NF3

Default-NF3

NFVnice-NF2

Default-NF2

NFVnice-NF1

Default-NF1

Packets processed in Mpps

Chain 1 Chain 2

Performance + Resource Utilization

Inefficient CPU

utilization by NF1

Judicious utilization

of NFs CPU

~2x Throughput

Gain with efficient

CPU utilization

Flows get right amount of bandwidth and NF resources

45

TCP and UDP Isolation

1

10

100

1000

10000

5 10 15 20 25 30 35 40 45 50 55 60

Th
ro

u
gh

p
u

t
in

 M
b

p
s

Time in Seconds

 TCP W/O NFVnice UDP W/O NFVnice

 TCP With NFVnice UDP With NFVnice

TCP affected by UDP flows!
Wastage of NF1,NF2 bandwidth

Effectively isolates UDP
and TCP flows

46

Impact on Simple Forwarding Latency

• Latency varies with packet rate (due to queuing at higher rates).

– Under low load the latency is 8~20 µs.

– At higher load latency increases to around 650 µs.

– NFVnice processing has minimal impact on base forwarding
latency across all load conditions.

47

OS Scheduler impact on Latency

• Same core(SC) scheduling vs pinning NFs to different cores (DC).

– Underlying scheduler significantly impacts the chain latency.

• NFVnice improves latency across all the schedulers.

– NFVnice benefits even when NFs pinned to different cores.
48

Summary
• Networks are changing – moving to a software

base
• SDN’s centralized control
• NFV’s software based implementations

• OpenNetVM – a high performance NFV platform
with containers; shared memory for zero-copy

• With proper NF scheduling and flow management
(backpressure) we are able to provide scalability,
fairness and effectively use available CPU
resources

• Packet processing by software platforms need to be
rate and cost aware

• Rate-and-cost proportional fairness important
51

Getting OpenNetVM

• Source code and NSF CloudLab images at

http://sdnfv.github.io/

52

53

