Software-Based Networks:
Leveraging
high-performance NFV
platforms to meet future
communication challenges

K.K. Ramakrishnan
University of California,
Riverside
(kk@cs.ucr.edu)

Joint work with: Timothy Wood (GWU) ,
our students, collaborators

UNIVERSITY OF CALIFORNIA, RIVERSIDE

session border
controller

= ... =
load balancer

firewall

QoE monitor

Network Function Virtualization

Run network functions in software

Driven by a confluence of factors: system capabilities; OS evolution
Requirements of new services + evolution of the network infrastructure

Router Firewall Router Switch Firewall B

/ VM VM Docker Docker

SwitchLB

'm/ \
. More flexible than hardware

- Easy to deploy NFs; quick instantiation
- Easier to manage NFs

- Network Service Providers are migrating towards a

software-based networking infrastructure: AT&T “55% of
network functions have been virtualized”

[.|

Commodity Server

Virtualization Overheads

* Virtualization layer provides (resource and performance) isolation
among virtual machines

* Isolation involves many functions such as access permissions (security),
ability fo schedule and share etc.

 Network overhead (packet delivery) is one of the most critical
concerns

» A generic virtualization architecture includes several crifical
boundaries — host OS, virtual NIC, guest OS, and guest user
space—getting packet data there includes memory copies

M Guest User
T Space
% Guest OS
= vNIC
Ol b = e e e e e e - =
cg vSwitch
3| _ HostOS
VL NIC

Jinho Hwang, K.K. Ramakrishnan, and Timothy Wood, “NetVM: High Performance and Flexible Networking using
Virtualization on Commodity Platforms,” NSDI “14.

R

R

Contributions: OpenNetVM

A virtudlization-based high-speed packet delivery platform

- for flexible network service deployment that can meet the
performance of customized hardware, especially when involving
complex packet processing

Network shared-memory framework

- that truly exploits the DPDK (data plane development kit) library to
provide zero-copy delivery to VMs and between VMs (containers)

A NF-Manager: provides switching and overall NF management
- dynamically adjust a flow’s destination in a state-dependent and/or
data-dependent manner

High speed inter-NF communication

- enabling complex network services to be spread across multiple NFs

Security domains

- that restrict access of packet data to only trusted NFs

Key Technical Challenges

* Achieving high performance:
* Wire-speed throughput
* Low Latency

mm) Function as a ‘bump in the wire’
* Flexibility to support software functionality from many sources/vendors

e Customization — can we have network functions customized for each
packet flow?

* Flurries (CoNext 2016), Microboxes (Sigcomm 2018)
 Scalability and effectively using resources: NFVnice (Sigcomm 2017)

e Scheduling
* Managing congestion

* Failure Resiliency
e Reinforce (Conext 2018)

Achieving High Performance

Linux Packet Processing

*Traditional networking:
— NIC uses DMA to copy data into kernel buffer
— Interrupt when packets arrive
— Copy packet data from kernel space to user space
— Use system call to transmit packet from user space

User Applications

Packetcopy Can it handle being
Interrupt Handling . o
System calls interrupted 14 million
i ?
TV times per second”
H/W Platform

Generic Packet Processing

R

Data Plane Development Kit (DPDK)

-High performance /O library
. Poll mode driver reads packets from NIC

. Packets bypass the OS and are copied directly into
user space memory

.Low level library... does not provide:
- Support for multiple network functions
Interrupt-driven NFs

State management

SDN-based control

TCP/IP protocol stack

R

OpenNetVM Architecture

O
NF NF

‘NF Manager (with DPDK) el — s

runs in user Space ‘i@[F’acl-cet] [F‘acket]HJ
" " *Shared Memory

NFs run inside Docker e e

containers oot Userspace

= NIC -

- NUMA-aware processing

- Zero-copy data transfer to and between NFs

— No Interrupts using DPDK poll-mode driver

- Scalable Multiple Rx and Tx threads in manager

- Each NF has its own ring to receive/transmit a packet
descriptor

- NFs start in 0.5 second; throughput of 68 Gbps w/ 6
cores; base forwarding latency < 10 usecs

11

OpenNetVM - System Architecture

FT

Packet

Packet

NF 1§

NFlib

?\ Container

rd
-,
\(/

(\ 1

NF 2

NF 3§

NFlib

NFlio |35 W
. Container | . Container

W e

NF 4

. Container |

NIC 1

X

?

O o
88 mor KB

NF Manager (DPDK)

T §

<~

_Nic2 I

 NF Manager uses DPDK library 1o allocate memory pools in
huge pages for packets

* NFs map memory regions using same base virfual address
as NF manager- descriptor access and shared memory

R

How to Eliminate / Hide Overheads?

Core To
ead
SchedMing
Overheac

R

Polling

(dedicated core)

User
Mode
Driver

(DPDK)

Pthread
Affinity

(pin threads to
cores)

Huge Pages

(1GB huge pages)

Lockless Inter-core
Communication

(ring buffer based message queues)

High Throughput
Bulk Mode 1/0 calls

Zero-Copy Packet Delivery

« Packet directly DMA-ed into huge page memory by
NIC (take advantage of DPDK)

« Applications in Container receive references
(location) via the shared descriptor ring buffer

* Packet content can be modified by NF application

4
VM
Applications]
I,_ __________________________
.I .ﬁ
| |
__/J _ -\ . L
[NetVM]
Hypervisor User Space

R

Service Chains

. Chain together functionality to build more complex

services
- Need to move packets through chain efficiently

Firewall

R

Service Chains

. Chain together functionality to build more complex

services
- Need to move packets through chain efficiently

Transcoder

. Can be complex with multiple paths!

R

Chained Packet Delivery

* Packets in memory do not have to be copied

« Applications in containers pass packet references 1o
others: NF>NF — through the descriptor ring

* Only one application can access a given packet at
any time for writing — avoid locks
o Allow multiple readers (e.g., packet monitoring)
NF] [NF
Applications] [Applications

[NF Manager /]

Hypervisor User Space

R

Trusted and Untrusted Domains

Virtualization should provide security guarantees among
VMs/containers

OpenNetVM provides a security boundary between frusted
and untrusted NFs

Grouping of frusted NFs via huge page separation
Untrusted NFs cannot see packets from OpenNetVM

(#1 Trusted VMs (#2 Trusted VMs

Ao

—~r-—-———=a~ 1l ~----- .\Jh
Memory H. Memory
__Sharing__; (__Sharing __,
X 7k

N 7
[NF Manager]

Generic Net. Path

R

Performance w/ Real Traffic

. Send HT TP traffic through OpenNetVM

- 1 RX thread, 1 TX thread, 1 NF = 48Gbps
- 2 RX'threads, 2 TX threads, 2 NFs = 68Gbps (NICs bottleneck?)
- 2 RXthreads, 5 TX threads, chain of 5 NFs = 38Gbps

. Fast enough to run software-based edge/core
router; Middleboxes function as a ‘bump-in-the-wire’

70
%60 |-
S 50
550
= 40 |-
-
230 |
=4
320 |
S10 |
0
K 1RX/ATX/ANF 2RX/2TX/2NF 5 NF Chain

21

Service Chain Performance

. Negligible performance difference between

processes and containers.

- OpenNetVM sees only a 4% drop in throughput for a six NF
chain, while ClickOS falls by 39% with a chain of three NFs.

ONVM-Process s Clickos
ONVM-Docker s

= =N
o U O

Throughput (Mpps)

o U

1 2 3 o
Chain Length

-

22

OpenNetVM - NFV Open Source Platform
http://sdnfv.github.io

* Network Functions run in Docker containers

 DPDK based design, to achieve zero-copy, high-speed
/0
* Key: Shared memory across NFs and NF Manager

* An open source platform

* Multiple industrial partners evaluating/using
OpenNetVM

* Of course, there are many competitors (e.g., Fast Data
Project (fd.io), NetMap, BESS (E2), ClickOS, etc.)

R s

UCK

Scalability, Performance, Fairness: NF
Scheduling and Backpressure -
NFVnice

Sameer G Kulkarni, Wei Zhang, Jinho Hwang and Shriram
Rajagopalan, K. K. Ramakrishnan, Timothy Wood and others

(ACM Sigcomm 2017)

24

How to address performance and
scalability for NFV platforms?

* Consolidation approaches wonitor MEMN 105 M Encryption B
— E2 [sosP ‘15], NetBricks [0sDI‘16]: m i m; m;

— Consolidate NFs of a chain on F""iﬁ_“i) _mi i -mi
single core. m'§f m‘étm‘

e But, lot of different NFs and diverse NF chains >>> compute cores!
VIPerformance; XScalability! X Chain Deployment Flexibility!!

* Multiplexing approach:
— Flurries [coNext “16], ClickOS [NSDI‘14]
— Multiplex NFs on same core.
MScalability; XIPerformance?

VIChain Deployment Flexibility;

Ity

How to Schedule the NFs to optimize the system utilization?

UCR

Scalability through NF Scheduling

> Why schedule/multiplex more than 1 NF on same core?

Not all NFs need full CPU - Poll mode results in wastage of CPU
bandwidth.

> 1/0O bound NFs result in sporadic/intermittent usage of CPU.

Diverse & large number of network functions; and diverse NF
policies (chains).

> # NFs and # NF Chains >> # Cores on Servers

Varying traffic cha’ = not all NFs process packets all the time.

Cross core chaining of NFs result in cross-core NUMA overheads.
> To support diverse NFs and NF chains, to efficiently utilize CPU

bandwidth, and to avoid CC-NUMA overheads, multiplexing
multiple NFs on the same core may be beneficial.

26

UCK

NF Scheduling: Fundamentals

» NF Scheduling: combines both the hardware packet-scheduling and software
process-scheduling concepts.

> NFs/flows sensitive: minimize packet-drops and provide predictable latency

» Hardware packet-scheduling:

Determine the order of packet transmission at the output link.
Examples: FIFO, Round Robin, Weighted RR, Class based, Priority, etc.

Queue 1 weight 1

Packets to sent T 4 VW
through this mterfaoe Queue 2 weight 2 Packets sent
O O O O) .
on — Interface
csanem i \ ; - - |
oeoon) Camm()| @
Queue N-1 wenght N-1 %

Q‘ () Schedule Sending queue

Queue N weight N

CIassnfy

In NF Scheduling, corresponds to selection of packets for processing at each
of the NFs.

27

g UCR

NF Scheduing: Fundamentals

» Software NF Scheduling: OS Schedulers allocate CPU to the competing NFs.

» Different OS Schedulers: NORMAL (CFS, Batch) Real Time (Round Robin, FIFO).
CFS: “Virtual-runtime” based fair scheduler.

(numbers in tree represent the total
vruntime accrued by each process).

Modes represent

sched_entity(s)

indexed by their
virtual runtime

“‘Red-black” tree: efficient, self-balancing
data-structure to store/sort the tasks.

Left-most task (least vruntime) is scheduled.

Space needed for Red-black tree is O(n).

MIL NIL MIL MNIL| |MIL NIL .

ME - NG N N Search, Insert, Delete in the order: O(logn).
virtual runtime

) Most need of CPU Least need of CPU

Diverse (heterogeneous) NFs have different per-packet computation costs.

Per-packet processing cost of the NF can vary - resulting in different CPU
utilizations over time.

NFs can be part of one or multiple service chains - order of scheduling the NFs
can impact the packet processing.
28

UCR

NF Scheduling: Desiderata

> Multiplexing more NFs on same core:

Diverse network functions: I/O intensive or different computation costs;
scheduling them on a single CPU can impact the overall performance

(throughput and latency).
Flows can be of varying rates, going through different NF chains.

Ensure fair-sharing of the CPU resource across all the competing NFs.
> What is the right notion of fairness for allocating CPU to the NFs?

Honor both packet-level scheduling requirements (per-flow QoS) and task-
level process scheduling requirements (per-NF QoS).
> What is/are the right knobs(s) to tune and control the OS

schedulers?

In addition, packet processing at NFs needs to follow the order in the
service graph. Scheduling order can have a large impact on throughput

and latency.
> What is the right sequence/order for scheduling the NFs?

29

Use Existing Linux Schedulers?

Vanilla Linux schedulers:

We want:

R

Completely Fair Scheduler
* Normal or Default
* Batch (longer time scales)

Virtual run time
Nanosecond granularity

High throughput

Fairness across NFs

Low latency o O
(@]

Low context switch overheads

Real Time Scheduler

Round Robin
FIFO

- Time slice
- Millisecond granularity

Do existing schedulers
perform well?

Do schedulers account for:
Offered Load?

NF cost heterogeneity?
Chaining sequence?

31

OS Scheduler Characterization (Load)

3 Homogeneous NFs running on the same core with offered load 2:2:1.

6Mpps 6Mpps 3Mpps

Flow 1 Flow 2 Flow 3

Core

Schedulers fail to account NF load!
100 7 \
NF1 BEmE NF2? mmmm NF3 e A Fl e F) semm F3 e

CPU Utilization (%)

Throughput in Mpps
o — [\S] w Ny o [=)]

Normal Batch RR Normal Batch

* Normal and Batch CFS always allocate CPU equally.
* RR: CPU allocation depends on voluntary yield within the allotted time-slice.
* Ideally, rate proportional allocation for NF1:NF2:NF3 must be 2:2:1. 32

OS Scheduler Characterization (Cost)

3 Heterogeneous NFs (per packet processing cost 10:5:1) with equal load

~5Mpps ~5Mpps

Flow 1 Flow 2

| Schedulers fail to account NF Processing cost!

~5Mpps

Flow 3

100

NF1 B NF2 B NF3 -

80

CPU Utilization (%)

Normal Batch

* Again, Normal CFS allocates CPU equaIIy, Batch CFS is coarser allocation (better)

B w a ~N

Throughput in Mpps
w

- [\S]

0

—

Normal

Fl NN F2 EEEE F3

Batch

* RR: allocation depends on voluntary yields in allotted time-slice.
* |deally the cost proportional allocation for NF1:NF2:NF3 needs to be 10:5:1

OS Scheduler Characterization (Chain)

3 NF chain (all NFs running on same core):

3 . sﬁ
F
ZYOZ
NORMAL BATCH RR

Too many/too little context switches result in overhead and inappropriate allocation of CPU

61 Total 20K/s 2K/s 1K/s

10 Mpp
Flow 1

7.1

L
3Y58

Throughput in Mpps

Core

I NF1 Throughput I NF1 Dropped Packets‘
NF2 Throughput B NF2 Dropped Packets

[— (— NI 7 =< /1VY/A VARV A/N < /YA

NEFVnice

A user space control framework for scheduling NFV chains.

e NFVnice in a nutshell:

— Complements the existing kernel task schedulers.
* Integrates “Rate proportional scheduling” from hardware schedulers.
* Integrates “Cost Proportional scheduling” from software schedulers.

— Built on OpenNetVMI[HMBox'16, NSDI'14]: A DPDK based NFV platform.
* Enables deployment of containerized or process based NFs.

— Improves NF Throughput, Fairness and CPU Utilization through:
* Proportional and Fair share of CPU to NFs: Tuning Scheduler.
* Avoid wasted work and isolate bottlenecks: Backpressure.

R * Efficient I/O management framework for NFs. 35

NFVnice: Building Blocks

.\

Work-conserving and proportional
scheduling (within each core)

Back
pressure

Chain-aware scheduling; Avoid

a node)

wasted work (within and across cores of

control (across nodes)

‘ End-2-End Bottleneck/congestion

’
“ Efficient Disk I/O Mgmt. Library

37

cgroups

Rate-Cost Proportional Fairness

* What is Rate-Cost Proportional Fairness?

— Determines the NFs CPU share by accounting for:
* NF Load (Avg. packet arrival rate, instantaneous Queue length)
* NF Priority and the median per-packet computation cost.

e Why?
— Efficient and fair allocation of CPU to the contending NFs.
— Flexible & Extensible approach to adapt to any QOS policy.

 How?

— Cgroups (control groups) is a Linux kernel feature that limits, accounts
for and isolates the resource usage (CPU, memory, disk |/O, network,
etc.) of a collection of processes.

cgroups

Rate-Cost Proportional Fairness

Initialization
mkdir /cgroupfs/NF(i)

|

Weight Computation
load(i) = }Li?i(Sl—

Total Load(m) = Z load (i)
i=0

Priority.x load(i)
riority: Total Load(m)

|

Update Cgroup Weight

Write “NFShare(i)” to
/cgrougfs/NF(i)/cpu.shares

NFShare(i) =

Every 10 ms

Back
pressure

Backpressure in NF chains

* Selective per chain backpressure marking.

,.‘A° Bottleneck

IIAII’ IIIAII’
NF1
r B— —B—> NF2 N %
NF5
Upstream Dataflow Downstream

— Only Flow “A” going through bottleneck NF (NF3) is back-
pressured and throttled at the upstream source NF1.

— while Flow “B” is not affected.

40

Back
pressure

— NFVnice Backpressure

Reacts Instantaneously s,

Chain Isolation
Throttle

Qlen < LOW_WATER_MARK

Evaluation

Testbed:

— Hardware: 3 Intel Xeon(R) CPU E5-2697, 28 cores @2.6Ghz servers, with
dual port 10Gbps DPDK compatible NICs.

— Software: Linux kernel 3.19.0-39-lowlatency profile.
— NFVnice: built on top of OpenNetVM.

Traffic:
— Pktgen and Moongen: Line rate traffic (64 byte packets).
— lperf: TCP flows.

Schemes compared:
— Native Linux Schedulers with and w/o NFVnice.
Different NFs (varying computation costs) and chain configurations.

R &

Performance: Impact of cgroup weights

and Backpressure

Simple Three NF Chain

Cycles per packet

Core-1 Core-1 Core-1

Default Only BKPR mmmm
Only CGroup I8 NFVnice EEE

Significant
Reduction in Wasted
Work!

NFVnice Default NFVnice

Default
3. 58M 11.2K
N <!, 58% <0.3% 657.825 128.723

2. on—b 12.3K

602.285 848.922

CPU Allocation a to
Computation Cost

i ok |
CFS Normal Wasted Work NF Runtime (ms)
I Scheduler (Packet Drops/sec) | (measured over 2s interval)

NFVnice improves throughput for all kernel schedulers.

Performance + Resource Utilization

~2x Throughput
Gain with efficient
CPU utilization

Inefficient CPU
utilization by NF1

ore -
Judicious utilization
f NFs CPU

0}
EChainl m Chain,2 8 - - 100

W CPU Util. %
- 90

Default-NF1 eeee
NFVnice-NF1 M- s0
Default-NF2 - 70 £
NFVnice-NF2 60 O
Default-NF3 50 E
NFVnice-NF3 -
Default-NF4 - 40 3
NFVnice-NF4 G

v - LI | | D D‘”””‘LD

Default NFVnice

TCP and UDP Isolation
T

Core- L.Aore-
~~ TCPaffected by UDP flows! " Effectively isolates UDP
S~ Wastage of NF1,NF2 bandW|dth / S~ and TCP flows S

39— Tcp W/O NFVnice - UDP W/O NFVnice
\ TCP With NFVnice =& UDP With NFVnice

AA\ ?L,d_ﬁ

(7))
_§'1000 \
= \& n—n—a—n I/
o
e
&0
3 10
c
l_
1 T T T T T T T T T T T 1

5 10 15 20 25 30 35 40 45 50 55 60
R Time in Seconds 46

Impact on Simple Forwarding Latency

800

Default(SimpIIe Forwarding)

700 | NFVnice(Simple Forwarding) —@—
600 |
g 500 + 20
p -
> 400 | 0 .
o 100 500
® 300 |
200 |
100 |
0@ @ :
100 500 1000 5000 10000

Packet Rate in Mbps
e Latency varies with packet rate (due to queuing at higher rates).

— Under low load the latency is 8720 ps.
— At higher load latency increases to around 650 ps.

— NFVnice processing has minimal impact on base forwarding

R latency across all load conditions. .

OS Scheduler impact on Latency

Simple Three NF Chain

NF1 NF2
11.;. .«_-pp 270 Cpp ssu Epp

Core-1

6500
6000 NFVnice(SC)

5500 Default(DC) | NFVnice(DC)
5000 |-
~4500
=4000 T =
>3500 - ~ T 4 -

< 3000
g 2500 H %
2000 é
1500 1
500 | NORMAL BATCH RR(1ms) RR(100ms)
0

e Same core(SC) scheduling vs pinning NFs to different cores (DC).

— Underlying scheduler significantly impacts the chain latency.
* NFVnice improves latency across all the schedulers.

R - NFVnice benefits even when NFs pinned to different cores.
48

Summary

* Networks are changing — moving to a software
base
* SDN’s centralized control
* NFV’s software based implementations

* OpenNetVM — a high performance NFV platform
with containers; shared memory for zero-copy

* With proper NF scheduling and flow management
(backpressure) we are able to provide scalability,
fairness and effectively use available CPU
resources

* Packet processing by software platforms need to be
rate and cost aware

R e Rate-and-cost proportional fairness important

Getting OpenNetVM

e Source code and NSF CloudLab images at
http://sdnfv.github.io/

Shared Memory

(packets, flow tables, service chains, ring buffers)

7 NF‘Is\ / NFzs\ s NFss\ % NF43\
NFlib NFib oty U NFlib v NFlib | e
(_Container _Container Container __Container |
T § (Mgr$) (3 Je—

NIC 1 NF Manager (DPDK) - Nc2

53

